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Abstract: This paper considers a multi-agent system which aim is to determine the maximum
of some field. For that purpose, noisy measurements are collected by each agent and exchanged
between neighboring agents. The maximization task, performed by gradient climbing, has to be
robust to the presence of agents equipped with sensors providing outliers. For that purpose, an
outlier detection scheme is used and the optimal configuration for agents with different sensor
noise characteristics is evaluated. This gives insights to derive a practical distributed control law
to achieve robust maximization. The stability of the system with this control law is analyzed.
The resulting performance is illustrated on an example.
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1. INTRODUCTION

Autonomous vehicles (moving agents) have increased abil-
ity to perform complex missions, such as exploration or
surveillance of some geographical area. Such missions are
more easily completed when agents cooperate (Bullo et al.
(2009)). Cooperation between agents allows to use simpler
sensors and vehicles and provides an increased robustness
to potential failures compared to missions addressed by a
single agent.

This paper considers agents equipped with sensors mea-
suring some field (temperature, radiation, chemical agent
concentration) at their location. The agents have to deter-
mine cooperatively the location of the maximum of the
field over some a priori search zone, see Ahmadzadeh
and Buchman (2006); Tang and Parker (2006); Choi and
Horowitz (2007); Parker (2013). The main additional con-
straint considered in this paper is robustness against the
presence of faulty sensors, as in Chamseddine et al. (2012).

For that purpose, each agent performs a local estimate of
the field and of its gradient by sharing information over a
wireless network. A control law which drives the agents
towards the maximum while avoiding collisions is then
evaluated as in Choi and Horowitz (2007). This approach,
however, is very sensitive to erroneous measurements (out-
liers) potentially provided by agents equipped with faulty
sensors. Such outliers may compromise the mission as
shown in Zhang et al. (2010). The aim of this paper is
to use Fault Detection and Identification (FDI) methods
to isolate the faulty agents. It thus presents an adaptation
of the control law to minimize the influence of the faulty
agents on the success of the mission while keeping them in
formation.

Numerous FDI methods have been presented in the liter-
ature, see, e.g., Elnahrawy and Nath (2004); Jeffery et al.
(2006); Janakiram et al. (2006); Wu et al. (2007); Curiac
et al. (2007). For example, in Wu et al. (2007), each sensor
uses the median of the measurements of its neighbors to
detect possible outliers. Curiac et al. (2007) estimate the
expected value of the measurement of an agent using its
own previous measurements. The FDI approach presented
in this paper is derived from Curiac et al. (2007) as it
compares the actual measurement of an agent with its
estimated value obtained from the measurements provided
by the agents of its neighborhood.

Reconfiguration after fault detection is usually based on
modifying the control of the agents (Zhaohui and Noura
(2013)) or re-planning their trajectories, as in Chamsed-
dine et al. (2012). The reconfiguration technique intro-
duced in this paper modifies solely the control law of the
faulty agents to limit their impact on the estimates of the
field and its gradient, which reduces the computational
cost.

This paper is organized as follows. First, Section 2 presents
the cooperative estimation problem and the agent dy-
namic and measurement equations. The proposed solution,
including the FDI and the optimal configuration agents
should adopt is described in Section 3. A pragmatic dis-
tributed control law to drive the agents towards the field
maximum is introduced in Section 4 and its stability is
demonstrated. Simulations illustrate the performance of
the approach in Section 5.

2. PROBLEM FORMULATION

Consider a scalar spatial field ¢(x), defined at any position
x = (z,y)7 of some search area D C RZ?. The field ¢
is assumed to be twice-continuously differentiable, time



invariant, and to have a unique maximum at some position
xpr € D. The gradient of ¢ at x is

T
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N identical agents equipped with sensors obtain measure-
ments at discrete time instants ¢y,

yi (tk) = & (x; (tr)) + i (te) (2)
of ¢ at their positions x; (t;), ¢ = 1,..., N. Each agent is
characterized by the state 6; (¢;) of its sensor, which may
be good 6; (t;) = 0 or defective 0; (tx) = 1. The 0; (t)s
are realization of time-invariant and independent Markov

chains with transition probabilities for i =1,..., N
por = Pr (6; (tx) = 1[6; (tx—1) = 0) 3)
p1o = Pr(6; (tx) = 0]6; (tg—1) = 1) (4)

and poo = 1 — po1 and p11 = 1 — p1o. In (2), the n; (tx)s
are realizations of independently distributed zero-mean
Gaussian variables with state-dependent variance O'gi (tr)’

where 07 < of. All agents are synchronized and make
measurements at the same time. At each time instant
tr, the i-th agent is able to communicate with a subset
of agents which indexes are N;(tx) C {1,...,N}. These
communications are assumed without delay and losses.

The dynamic of each agent is modeled as

where u; () is the control input applied to agent ¢ at time
tg, M is its mass, and C (x;,%X;) a non-negative friction
coefficient, see Wang (2007).

The purpose of the mission is to find
Xar = arg max 6(x), (6)
xeE

while maintaining the formation, despite the presence of
€rroneous Sensors.

3. PROPOSED SOLUTION

The proposed solution consists in four steps that will be
performed during each time interval [tg,tg41[. First, all
agents take a measurement y; (¢x) of the field at their
location x; (tx). Second, the measurement and the current
agent location are broadcast to the other agents in its
neighborhood. Third, using the shared measurements, all
agents estimate the state of their sensor and of the sensors
of their neighbors. This estimation may be performed
using the various FDI techniques described in Elnahrawy
and Nath (2004); Jeffery et al. (2006); Janakiram et al.
(2006); Wu et al. (2007); Curiac et al. (2007). Next, each
agent i performs an estimation of the field and of its
gradient at the current estimate X¥ of the location of the
maximum of the field. These estimates may be different
since they do not share the same information. Using
gradient climbing, each agent is then able to evaluate an
updated estimate §f+1. Finally, a control law is designed
in a distributed way for each agent to move towards if“,
keeping the agents in formation, while avoiding collisions,
and trying to minimize the variance of the estimation error
of the field and its gradient at X%,

In the following, we focus on the last three steps and
only outline the FDI step, which is assumed successfully
performed for each agent.

3.1 Field and gradient estimation

A local model of ¢; is derived from a second-order Taylor
expansion of ¢ considered at X¥

6i (%) = ¢ (&) + (x — %) Vo (=F)
by - V) (k=) ()

where x; belongs to the segment joining x and X¥. The
alm is to obtain an estimate as accurate as possible of

o= (v(bcb(g’z) )

using y; (tx), i =1,...,N.
One may approximate ¢; in (7) as follows

— ~ ~ T ~

i (x)=¢ (X,]f) + (x - xf) Vo (Xf) , (8)
introducing the approximation error

ei (%,%F) = ¢ (x) — i (%)
1 T ~
=5 (x=%) Vo) (x=%7),  (9)

corresponding to the neglected second-order term of (7).

The model (8) could be extended to take into account
the Hessian matrix. However, various examples provided
by Zhang and Leonard (2010) illustrate the fact that the
estimation of the Hessian matrix from noisy field measure-
ments is difficult and results in poor-quality estimates.

Using (7), Agent ¢ models the measurement y; (¢) pro-
vided by Agent j as follows

yj (tk) = ¢ (x5 (tk)) + nj (t)
~ ~k\T ~
= ¢ (XF) + (x5 (t) = XF) Vo (XF) + 1 ()
1 T ~

+ By (x; (tr) — Xf) V2¢(Xij) (x; (tr) — Xf) )
(10)
where x;; belongs to the segment joining xXF and x; (tg).
Then

vy () = (1 (s () — )" )
+e€; (Xj (tx) ,ﬁf) +n; (t) . (11)

Agent i collects all the measurements available in its
neighborhood N;(¢x) at i to get

Yik = Ripod + 05+ e (12)
where -
Yik = (i, () - - Yin, (tr)) ",
T
1 (xi1 (tg) — xf)
Rig=|": : , (13)
T
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with N (tx) = {i1,...,in,}. The measurement noise
vector n; i, is zero-mean Gaussian with diagonal covariance
matrix

%, = diag (agil(tk), ad m)) . (15)

In absence of e; i, the maximum likelihood estimate of a
would correspond to the argument of the minimum of

Jo (@) = (yir — Ripa) ;" (vir — Riga).  (16)

Accounting for the impact of e; , is more complicated. The
j-th component of e; is a function of ||x; (tx) —?cf”i,
where ||-||, is the Euclidian norm. The model error grows
thus quadratically with the distance between x; (tx) and
X¥. Agents which are far from X¥ should thus have less
impact on the estimate of a¥ than agents close to X¥.
The following weight matrix, close to the one used in
Ogren et al. (2004), was chosen to account for both the
measurement noise and the modeling error,

) _ —|x1 (tr) — XK)3
W, = diag (0912(tk)eXp< I I(Z) ||2),...,

2 —|lxn () = XF1I5
Ton (ty) P ( kv ’

where k,, is some tuning parameter to be adjusted depend-
ing on the spatial correlation of ¢. The weighted least-
square estimate of af with weighting matrix W, ; is then

(18)

(17)

?

~k T -1 7
a; = (R yWirRix) R Wiy

3.2 Bank of residuals for fault detection and identification

Model-based fault detection and identification (Curiac
et al. (2007)) uses a model to predict the expected field
value, which can then be compared to the actual mea-
surement of an agent to generate a residual. This residual
should be close to zero or stay between bounds when there
is no fault and become large when a fault occurs.

A bank of filters is used here to identify which sensor
provides a faulty measurement (if any). For the i-th
sensor, [N (t)| residuals 7; 5 are built by excluding the
k-th measurement from the estimation (18), for k =

ik = (Yik — Ripa). (19)
By design, r; ;, is sensitive to faults on all sensors, except
the one affecting the k-th sensor (this is usually named
as a generalized filter scheme). Since r;; includes its own
measurement y;, it remains sensitive to a fault on the i-
th sensor and is therefore sensitive to all faults. It can be
used as a detection signal only, and the | (tx)] — 1 other
residuals can be used only when r; ; raises an alarm so as
to limit the computational load of the method.

At every time step, each sensor updates a list of sensors
that it considers as faulty. A consensus on the possible
faulty sensor is then obtained on the fleet as follows: each
sensor broadcasts the list of sensors that it has found
to be faulty using its bank of filters. The one which
has been voted most often is declared to be faulty, and
reconfiguration can be sought for to limit its contribution
to the estimation.

8.8 Updated estimate of the location of the field mazimum

A new estimate X!

of the location of the field maximum
is evaluated from ﬁf and af . For that purpose, one has
first to evaluate whether X¥ actually corresponds to an
increase of ¢ compared to the value that has been obtained
for ﬁffl. Let A\¥ be the gradient step size at time ;. One
updates A1 as follows
. k—1 e 7ok T (ok—1
)\f _ H}gujl{)\maxa 2>\z } if ¢ (Xl) > ¢ (Xi ) ’ (20)
AT /4 else,

where Apax is a fraction 8 € [0,1] of the maximum
displacement an agent can perform during a time slot.

Using gradient climbing, one then gets

A R AZACH WA L ZIC)] IREY

The classical step-size adaptation scheme (20), see, e.g.,
Walter (2014), enables the agents to slow down when
reaching the global maximum of the field ¢.

3.4 Optimal agent configuration

The control law for the i-th agent has to be such that the
agents remain in formation, avoid collisions, and minimize
the variance of the estimation error of a**! at ﬁfﬂ. From

(18), one may deduce an approximation ' of the covariance

k41 ~
of a;t at %M1

~ -1
2a§+1 = (REkHWi,kHRi,kH) . (22)

To get a small iax_cH, one chooses to determine the
target position of each agent that maximizes the trace of
R}, 1 Wik 1R xq1 under the constraint that it does not
collide with any other agents at t;;. This is translated in
the following constrained optimization problem
(% (1) - - XN (trt1)) =
arg max tr (R;I:kJeri,kJrlRi,kJrl)

(X1,50esXN
2 2 . .
st [|x; —xj|5 = 6%, j>i.

To solve this problem, one introduces the Lagrangian
associated to (23) and uses (13) and (17)

Y, —[Jx; — %513
‘C(Xlw"aXNyy'):dei(tk+l)exp k—
=1 w

(U [ = REG) + D0 =3

7>

(23)

(24)

where the p; ;s are Lagrange multipliers. Taking the par-
tial derivatives of (24) with respect to x;, one gets

oL —2 Skl —||xi — %513
o 200, (1 01) (xi = %) exp T e

(1 - é (1 + ||xi — Af““i)) + QZ,uij (x; — x;)(25)

J#i

~k+1 . . PP .
L ai+ is assumed unbiased, even if it is not the case in general,
due to the presence of e; ;. Close to xjps, more specifically, the

components of e; j are likely to be negative.



Assuming first that p;; = 0 for all ¢ # j one may easily
show that one should have

N 2
i (tre1) = %5l = ko = 1
which is possible only provided that ky > 1. In this case,

X; (tp4+1) has to be located on a circle of radius vky — 1

centered in if“. A necessary condition for all agents to

coexist on this circle while complying with the constraint

of (23) is
27m/ky — 1 > NG. (26)

The condition ky > 1 corresponds to a modeling error
increasing slowly with the distance to the point where the
Taylor expansion has been performed, which is satisfied
when ¢ varies slowly.

Assume now that p;; # 0 for some j # 9. Then, at tjy1,
the x;s have to satisfy fori =1,..., N

-2 ok+1 |[x; — A?HH%
O-ai(tk+1) (xi —X; ) exp —7]{
W

1+ X¢7§§+1 2
-(1— H ’ ||2> +Z,uij (Xi—Xj):(). (27)

J#i

The general case is difficult to solve. In the case of two
agents, introducing

(51 = X1 (tk+1) — §k+1

and

02 = X2 (tet1) — Xkt

one may show (details are omitted due to lack of space)
that

o when agl(tkﬂ) = 032(tk+1)’ necessarily, 61 = —d5 and
161, =6/2,

e when O-gl(tk < ng(tkﬂ)’ &1 and &5 should still be
colinear with [|d1]|, < [|02]|, and [|81], + [d2]|, = 6.

4. CONTROL LAW WITH POSSIBLE
RECONFIGURATION

Section 3.4 provides some insights on the way the agents
should evolve to fulfill the mission described in Section 2.
When £k, is larger than 1 and when N is small enough to
satisfy (26), the control law of the agents should be such
that they move on a circle of radius vk, — 1 centered in
ﬁf“. This result is obtained whatever the state of their
sensors. When k,, is smaller than 1, or when N is too large,
the agents with sensors in good state should be closer to
§f‘+1 than those with defective sensors.

4.1 Proposed control law

In what follows, we assume that the update of the estimate
X; is performed at a frequency large enough to consider it
as a twice-continuously differentiable function X;(¢) of t.

Each agent is controlled independently of the other agents
and only requires the knowledge of the position of its
neighbors for collision avoidance. The proposed control law
assumes further that k&, < 1 or that N > 27k — 1, so
that agents with good sensors have to be located closer to

X;(t) than agents with bad sensors. The structure of the
control law is inspired from that of Cheah et al. (2009)

uj = M, + C(x4,%;)%; — k1 (5(1‘ - )/Ez)

(28)

N
+2@§:@¢7&)%1f%(@m&f§g,
j=1

where k1 > 0 is used to adapt the speed of each agent
to the speed of X;. The constant ks > 0 determines the
relative importance of the collision avoidance term in (28),
where

9ii = exp (~658/a) (29)

with d;; = x; — x;, the difference of position between
agents ¢ and j, with ¢ a function of the square of the
minimum safety distance between agents. Finally, k(6;) >
0 determines the attractivity of X;.

4.2 Reconfiguration

As indicated in Section 3.4, agents with bad sensors should
be driven farther away from X; than agents with good
sensors. Such a behavior is obtained by modifying the
value of gain k% (6;).

To analyze the effect of a change of k% (6;), consider first
the fleet at equilibrium, with all sensors in good state. At
equilibrium, (5) combined with (28) becomes for the i-th
agent

Ky - =) + 2k Y (k- x) 2 =0, (30)
i e
After some manipulations, (30) may be rewritten as
2k
~k 2

X; —

Zw—m%.m)

X; = = -
2ks Zj;ﬁi gqj — k3 (92) i

Now, assume that at a given time instant, the ¢-th sen-
sor becomes defective and has been identified as such.
Assuming that the positions of the other agents are not
significantly affected by the modification of 0;, 3, (x; —

%;)%L is approximately constant. To drive the i-th sensor
q

away from X;, one has to ensure that the absolute value of
, 2ks

2k2 Z];él gqj - ké (91)

when 6; = 1 is larger than its absolute value when 6; = 0.

This is performed by appropriately modifying the value of
k5 ().

(32)

4.3 Stability analysis

Consider the candidate Lyapunov function

N
1 . ko . =k
V—Ziz_;((xl X; ) M(*x; —X;)
' N
+(xi — R TRY(0:) (i — XF) + k2 _gij | . (33)
j=1

Assume that 0; is constant for each sensor. After some
derivations following those in Cheah et al. (2009) and not



detailed here due to lack of space, one shows that the time
derivative of V satisfies

V= ﬁ: [~ (i - ST (% — %) <0

The time derivative V of V for the designed control law
thus ensures the global asymptotic stability of the system.

When the 6;s are not constant, assuming that p1g = 0, i.e.,
that a sensor does not return to the good state once it is
defective, the system will jump from one globally stable
configuration to another globally stable configuration.
Since the number of jumps is limited to N, the number
of agents, the system remains globally stable.

Finally, the control law ensures that the speed of each
agent will asymptotically converge to the speed of the
estimate of the field. Moreover, all agents will move closer
to X;, while avoiding collision. Note that, for faulty agents,
the movement towards X; will be counteracted by the
collision avoidance scheme.

5. SIMULATION EXAMPLE

A fleet of N = 15 moving agents is considered. All
agents are assumed to communicate with each other, i.e.,
Ni(t) = {1,...,N} for all i and all ¢. Agents share their
positions, their present measurements, and their estimated
location of the maximum X¥. From these data, each vehicle
computes its own control law.

The FDI is assumed to be performed efficiently by each
agent, so that it can adjust the value of its gain k%. The
gradient estimation at X¥ can be done either by all the
agents with their information, or an operator or a single
agent that transmits the result to the others. The variance
of the measurement noise of good and defective sensors is
taken respectively as o2 = 1073 and 0% = 101

5.1 Reconfiguration is necessary

To illustrate the necessity of an adaptation of the gains
k%, leading to a reconfiguration of the fleet, the agents are
first placed in a Gaussian field centered in (10, 35)7 with
covariance matrix 02I = 5.1073I, where I is the identity
matrix.

The agents were initially randomly placed around X° =
(45,15)". The other parameters for the simulation are
M =1, C =0.01 for the dynamic of the agents, k1 = 50,
ko = 50, ¢ = 0.1. The measurement period is 0.1 s. In this
simulation, k3 is constant and chosen equal to 1500.

Figure 1 shows the evolution with time of the absolute
value of the difference between the estimated gradient
and the real gradient of the field. The red line refers to
a formation with an agent with defective sensor in the
middle of the fleet, while the blue line is for an agent with
defective sensor at its border.

This confirms, as expected, the fact that an agent with a
defective sensor should be driven farther away from X;(¢)
than agents with good sensors.
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Figure 1. Evolution with time of the absolute value of the
difference between the estimated gradient and the real
gradient of the field when and agent with defective
sensor is in the middle of the fleet (red) and on the
border of the fleet (blue).

5.2 Field maximization

Consider now a Gaussian field ¢ with maximum x;; =
(10,35)" and covariance matrix o2I = 10731 The agents

are randomly placed around X° = (40, 7)T. The parame-
ters are as in the previous section, except for ks, which is
now adapted. The number of closest neighbors for a given
agent being between 1 and 6, one chooses k3(0) = 1500 and
k3(1) = 10, which satisfy the condition |y¢ (0)| > |y% (1) ].

The localization of the field maximum by the agents is
illustrated in Figure 2. The agents with good sensors are
plotted with green dots. Those with defective ones are in
black.
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Figure 2. Maximum seeking of a field with fleet reconfigu-
ration



At time t; the agents are in formation around the position
X(t1) and the fleet starts to move along the direction of
the gradient. At time t5, a faulty agent is detected by
the FDI scheme. The gain k3 of the agent with defective
sensor is set to ks(1), leading to a reconfiguration of
the fleet. At time t3, the reconfiguration process is in
progress, the defective agent reaches the border of the fleet.
The influence of the measurement of this agent on the
estimation of the gradient is thus significantly decreased.
The last time instant ¢, illustrates how the formation
reaches the maximum of the field.

6. CONCLUSIONS

This paper presents a distributed field maximization tech-
nique using a fleet of mobile agents. To improve robustness
against measurement outliers provided by defective sen-
sors, the configuration minimizing the covariance matrix of
the estimate of the field and of its gradient in the presence
of inhomogeneous measurement noise is evaluated for two
sensors. This provides insights on the way a fleet reconfig-
uration should be performed when outliers are detected.
The proposed distributed control law allows each agent to
find autonomously its best location in the fleet.

The final version of the paper will provide further ex-
perimental studies for more complex fields and with an
increased number of defective sensors.
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